माना रैखिक समीकरण निकाय $x+y+k z=2$ ; $2 x+3 y-z=1$ ; $3 x+4 y+2 z=k$ के अनंत हल है, तो निकाय $( k +1) x +(2 k -1) y =7$ ; $(2 k +1) x +( k +5) y =10$
के अनंत हल है।
का एक हल है जो $x-y=1$ को संतुष्ट करता है।
का कोई हल नही है।
केवल एक हल है जो $\mathrm{x}+\mathrm{y}=1$ को संतुष्ट करता है।
मानकी $S=\left\{A=\left(\begin{array}{lll}0 & 1 & c \\ 1 & a & d \\ 1 & b & e\end{array}\right): a, b, c, d, e \in\{0,1\}\right.$ और $\left.|A| \in\{-1,1\}\right\}$, जहां $|A|$ आव्यूह (matrix) $A$ के सारणिक (determinant) को दर्शाता है। तब $S$ में अवयवों (elements) की संख्या. . . . . है।
यदि $\omega $ इकाई का काल्पनिक मूल हो, तो $\left| {\,\begin{array}{*{20}{c}}a&{b{\omega ^2}}&{a\omega }\\{b\omega }&c&{b{\omega ^2}}\\{c{\omega ^2}}&{a\omega }&c\end{array}\,} \right|$ का मान होगा
यदि रैखिक समीकरण निकाय
$2 x+y-z=3$
$x-y-z=\alpha$
$3 x+3 y+\beta z=3$ के अनंत हल है, तो $\alpha+\beta-\alpha \beta$ बराबर है ............. |
यदि $x + y - z = 0,\,3x - \alpha y - 3z = 0,\,\,x - 3y + z = 0$ का अशून्य हल हो, तो $\alpha = $
$\left| {\,\begin{array}{*{20}{c}}1&a&{{a^2} - bc}\\1&b&{{b^2} - ac}\\1&c&{{c^2} - ab}\end{array}\,} \right| = $